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A B S T R A C T   

Landslides are common geohazards associated with natural drivers such as precipitation, land degradation, toe 
erosion by rivers and wave attack, and ground shaking. On the other hand, human alterations such as inundation 
by water impoundment or rapid drawdown may also destabilize the surrounding slopes. The Guobu slope is an 
ancient rockslide on the banks of the Laxiwa hydropower station reservoir (China), which reactivated during the 
reservoir impoundment in 2009. We extracted three-dimensional surface displacements with azimuth and range 
radar interferometry using European Space Agency’s Copernicus Sentinel-1 and German Aerospace Center’s 
TerraSAR-X data during 20152019. The upper part of the Guobu rockslide is characterized by toppling and is 
mostly subsiding with maximum rates over 0.4 m/yr and 0.7 m/yr in the vertical and horizontal directions, 
respectively. During filling of the reservoir prior to 2014, there was a long-wavelength in-phase response be-
tween rising reservoir level and GPS-observed increased slope movements. After the reservoir water level sta-
bilized from 2015 to 2019, the slide movement became seasonal and we see a correlation between rainfall and 
landslide movement. These observations suggest that the slide motion is now primarily controlled by rainfall. 
The spatiotemporal landslide displacements allow us to estimate the hydraulic diffusivity of the rock mass, to be 
on the order (~1.05 × 10-7 m2/s) and the thickness of the moving rock mass (~200 m). Our results demonstrate 
that InSAR is a useful tool for monitoring the rockslide movement as a function of seasonal precipitation.   

1. Introduction 

It is well recognized that rapid impoundment and cyclic filling and 
lowering reservoir levels can perturb the bank slope stability (Chen 
et al., 2017; Paronuzzi et al., 2013; Qi et al., 2017). For example, more 
than 500 landslides occurred between 1941 and 1953 in the Roosevelt 
Lake formed by the Grand Coulee Dam construction (USA), causing a 
great economic loss (Schuster, 1979). Over 600 out more than 2,600 
preexisting landslides reactivated along the banks of the reservoir of the 
Three Gorges Dam (China) since it started filling in 2003, and 8 failed 
completely (Tang et al., 2019). Among them the 2003 Qianjiangping 
slope failure occurred shortly after an abrupt rise in water level of 
Qinggan River, a tributary of the Yangtze River, from 70 m to 135 m, 

causing more than 14 casualties (Wang et al., 2008). The 1963 Vajont 
landslide (Italy) was observed moving at a maximum rate of 80 mm/day 
after the first impoundment of the Vajont Dam in November 1960 
(Müller-Salzburg, 1987). The eventual catastrophic failure created a 
reservoir surge that destroyed several villages and claimed more than 
two thousand lives. On a global scale, many unstable slopes may be 
found around more than 38,000 dams and the corresponding reservoir 
areas (Mulligan et al., 2020). Therefore, detecting and monitoring active 
slopes and evaluating the magnitude of the slope movements are critical 
for hazard mitigation and risk assessment in reservoir impoundment. 
Conventional slope monitoring methods can only obtain sparse mea-
surements at a few locations on or within the affected slopes, such as 
from Global Navigation Satellite System (GNSS), inclinometers, crack 
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gauges, and acoustic sensors (e.g., Smith and Dixon, 2015; Li L. et al., 
2020, Li Y. et al., 2020; Xu et al., 2020). Steep and rugged topography 
makes the sensor installation and continuous monitoring extremely 
challenging. The non-contact remote sensing observations, such as high- 
resolution optical imagery, Light Detection and Ranging (LiDAR) sur-
vey, and Synthetic Aperture Radar (SAR) imagery, have been increas-
ingly used to map the spatially continuous and regularly sampled 
surface displacements in active slopes (e.g., Booth et al., 2013; Chen 
et al., 2006; Hilley et al., 2004; Hu et al., 2019; Intrieri et al., 2020; Shi 
et al., 2019a). The above-mentioned area-based tools can generate 
digital elevation models (DEMs) and vertical displacements from their 
differential point cloud data (e.g., Kayen et al., 2006; Collins et al., 
2009). Ground-based radar and LiDAR are now routinely used to 
monitor active slopes in mining and other geotechnical applications (e. 
g., Rouyet et al., 2017; Ventura et al., 2011). However, these measure-
ments are rarely available until a specific project is initiated. The chal-
lenge is obtaining prior temporal data with sufficient spatial resolution 
to discern ground movements without the need for ground-based 
measurements. 

The introduction of satellite-based SAR imagery with near-global 
coverage in the early 1990’s has created the opportunity to obtain 
temporal SAR data going back almost three decades. SAR is composed of 
the phase and amplitude of microwave electromagnetic waves and en-
ables us to measure ground displacements at millimeter accuracy and 
surface elevation at meter accuracy (Bürgmann et al., 2000; Jiang et al., 
2017). The traditional Interferometric SAR (InSAR) analysis, utilizing 
the phase component, measures ground displacements in radar range 
direction (a.k.a., line-of-sight, LOS; range and LOS are used inter-
changeably). As a complement, the phase-based split-bandwidth inter-
ferometry and the amplitude-based pixel offset tacking methods provide 
two-dimensional displacements in radar range and azimuth directions. 
The accuracy of the split-bandwidth interferometry method is better 
than that of the amplitude pixel offset tracking when a sufficient cor-
relation is maintained. To be specific, the standard deviation of azimuth 
split-bandwidth interferometry is ~0.1 m. In comparison, pixel offset 
tracking is 0.12–0.15 m when the coherence is 0.4 for C-band ERS data 
with a single-look azimuth pixel spacing of 12.5 m (Bechor and Zebker, 
2006). A complete three-dimensional (3D) displacement field can be 
resolved by combining measurements from multiple SAR datasets and 
methods. 

In this study, we focused on the Guobu slope on the bank of the 
reservoir of the Laxiwa hydropower station (China) (Fig. 1). Although a 
large headscarp of a preexisting rockslide was identified in the site 
investigation, the rockslide was deemed inactive and unlikely to pose a 
threat of reactivation (Xia et al., 2018). However, during the first filling 
of the reservoir in 2009, this rockslide, hereafter referred to as the 
Guobu slope, reactivated and started moving into the reservoir. Since 
then, the operators extended a major effort to monitor the slope and 
investigate the modes of instability (e.g., Lin et al., 2016; Xia et al., 
2018). 

Here we derived the 3D surface displacements and temporal 
behavior of the Guobu slope using azimuth and range InSAR results from 
two high-resolution TerraSAR-X tracks (2015–2017) and one moderate- 
resolution Sentinel-1 track (2016–2019). We identified a temporal long- 
wavelength correlation between the river level variations and the pre-
viously GPS-observed slope movements before 2014 and a subsequent 
seasonal correlation between the rainfall and landslide speed during 
2015–2019. It suggests that while the initial rockslide movement mainly 
responded to reservoir filling, once the reservoir level stabilized there 
were continued surface motions modulated by precipitation. We also 
constrained the hydraulic diffusivity (1.05 × 10-7 m2/s) and inferred the 
base of the movement (~200 m depth) from temporal and spatial sur-
face movements. 

1.1. Background and history of the study area 

The upper reaches of the Yellow River occupy a deeply incised val-
ley, making it an ideal site for high arc dams. More than twenty hy-
dropower stations were constructed on the Yellow River to meet an ever- 
increasing demand for electricity. The Laxiwa hydropower station is a 
cascade power station from Longyang Gorge to Qingtong Gorge. The 
first impoundment was completed in March 2009, and the water level 
increased from 2,250 to 2,340 m above sea level (a.s.l.). Subsequently, 
the water level was successively raised to 2,400, 2,430, and 2,448 a.s.l. 
in February 2010, February 2011, and September 2012, respectively. 
The water level remained relatively stable at 2,448 m from September 
2012 to May 2015 and then was allowed to rise to the design level of 
2,452 m by the end of October 2015 and has remained stable thereafter 
(Li et al., 2019). Concurrently, the river channels widened from ~70 m 
to ~500 m (Fig. 1), and as a result of the reservoir impoundment, three 
slopes, including the Guobu slope, started to move (Shi et al., 2019b). 
While two of the slopes sit approximately 4 km and 8 km upstream of the 
dam, moving at rates of 40– 60 mm/yr during 2015–2018 (Shi et al., 
2019b), the larger and faster Guobu slope, only about 1-km southwest of 
the Laxiwa hydropower station, has drawn immediate attention as a 
threat to the dam, its powerhouse, and the residential community ~4 km 
downstream. The Guobu slope is a large toppling rock failure (Lin et al., 
2016; Xia et al., 2018). The slope is composed of Mesozoic, medium- to 
coarse-grained, and highly jointed granite. Loose Quaternary deposits 
cover the slope and platform to a depth of ~1–11 m (Lin et al., 2016) and 
are subject to erosion by rain and wind. While the joints are wide open in 

Fig. 1. Landscape of the Laxiwa hydropower station and Guobu slope in 
Qinghai, China. Two satellite images, one obtained by Quickbird on 5/18/2004 
and the other obtained by Geoeye-1 on 10/4/2010, were collected before and 
after the first impoundment on 3/1/2009. The white dashed polygons outline 
the margins of the Guobu slope. Light blue lines delineate the Yellow River 
channels. Targets P1, P2 and P3 are selected for the time-series analysis in 
Figs. 5 and 7. The middle-right inset shows the trajectory of descending SAR 
satellites with azimuth direction (i.e., flight direction) and line-of-sight (LOS; i. 
e., range) direction indicated by arrows. The black-box inset shows the loca-
tions of 17 GPS sites deployed over the head of the slope. Fig. 6 shows the GPS 
time series. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 
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surface exposures, at depth the unweathered granite is compact, and the 
joints are more tightly closed. Exposures in exploration tunnels also 
show preexisting shears with slickenside surfaces coated with clay infill. 
The presence of a well-developed, steeply dipping joint set striking 
parallel to the river gorge trend makes the Guobu slope highly vulner-
able to toppling (Lin et al., 2016). 

1.2. Previous work 

While the area was identified as an ancient landslide during a 
geological survey in 1989 before the dam construction (Xia et al., 2018), 
monitoring data from simple observation monuments between 1991 and 
1997 reported no evidence of displacement (Xia et al., 2018). A 
retaining dam and a drainage ditch were constructed near the headscarp 
of the slope in 2004 to divert rainwater from infiltrating into the slope 
(Wang, 2011); however, the drainage ditch was destroyed in 2005 
(Zhang, 2014). Thereafter, rainwater would be able to seep into the 
Guobu slope easily. Optical remote sensing data suggested an extension 
of the headscarp during 2005 (Xia et al., 2018). The present-day vertical 
scarp at the top of the slide is more than 30 m high, and the estimated 
submerged depth at the toe is 200 m. The elevation difference between 
the river surface after the impoundment and the uppermost part of the 
headscarp is as much as 500 m (Fig. 2). 

The fastest episodes of slide movements occurred immediately after 
the first impoundment of the reservoir in 2009 (Zhang, 2014). A total of 
17 Global Positioning System (GPS) stations were immediately installed 
in the headscarp area (black box inset in Fig. 1) to monitor the slope 
movements in eastward (E), northward (N) and upward (U) directions 
(Lin et al., 2016; Xia et al., 2018). Here we extracted the time-series 
displacements measured from August 2009 to December 2013 re-
ported in Zhang (2014). The accelerated deformation at the Guobu slope 
was distributed along the preexisting joints (Lin et al., 2016), reaching as 
much as 40 m (e.g., 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
E2 + N2 + U2

√
at GPS site QC7) from 2009 to July 

2014 (Xia et al., 2018). Eventually, in response to gradually stabilized 
water level, the landslide speed slowed down to ~0.8 m/yr from late 
2015 to April 2017, according to InSAR observations (Li et al., 2019). 

Previous slope monitoring using SAR imagery (e.g., Shi et al., 2017b; 
Li et al., 2019) mainly focused on the displacement mapping and iden-
tified an overall decelerating trend. Limited by the quantity and tem-
poral resolution of SAR imagery and the traditional methods of InSAR 
and pixel offset tracking, only qualitative interpretations were achieved. 

2. InSAR measurements 

2.1. Conventional and split-bandwidth InSAR methodology 

We relied on three descending datasets, two high-resolution Terra-
SAR-X spotlight tracks (TSX-74 and TSX-150) and one Sentinel-1 track 
(S1-33), to measure the spatiotemporal displacements of the Guobu 
slope. The average acquisition intervals are ~22 days and ~12 days for 
TerraSAR-X and Sentinel-1 datasets, respectively (Table 1 and Fig. 3). 
Due to steep slopes, geometric distortions such as the foreshortening and 
layover occurred in ascending tracks for steep Guobu slope facing to-
ward the oncoming radar pulses. Therefore, the descending orbital SAR 
data are the only applicable spaceborne SAR observations at the Guobu 
slope. 

We applied different data processing strategies to derive the surface 
displacements for Sentinel-1 and TerraSAR-X datasets, whose pixel 
spacing, temporal intervals, and electromagnetic wavelength are 
different (Table 1). 

For the Sentinel-1 track, we used the standard time-series InSAR 
method to obtain LOS displacements. We applied multi-look factors of 4 
by 1 in range and azimuth and Goldstein filters with a 16 × 16-pixel 
window to enhance the signal-to-noise ratio. Pixels with coherence 
larger than 0.3 were considered for phase unwrapping. The least-squares 
estimation resolved the topographic errors on a set of interferograms 
based on a mathematical relationship with the satellite perpendicular 
baseline (e.g., Shi et al., 2017b). We corrected the long-wavelength at-
mospheric phase screen by removing a linear ramp fitted by radar azi-
muth and range positions and surface elevation (Liao et al., 2013). Time- 
series displacements were solved by the singular value decomposition of 
a total of 84 interferograms. 

The employment of traditional time-series InSAR method using 
TerraSAR-X data with longer temporal baselines and short electromag-
netic wavelength in our study area is challenged by the phase unwrap-
ping errors (Li et al., 2019). On the other hand, the time-series split- 
bandwidth interferometry reduces the sensitivity of phase to displace-
ments, and thus phase unwrapping becomes much easier (Jiang et al., 
2017; Shi et al., 2017a). We opted for a time-series split-bandwidth 
interferometry method to extract the two-dimensional azimuth and LOS 
displacements of the Guobu slope. In contrast, the traditional InSAR 
method can only resolve the one-dimensional LOS displacements. The 
split-bandwidth interferometry extracts the ground motions from the 
differential phase between the forward- and backward-looking in-
terferograms (Bechor and Zebker, 2006; Jiang et al., 2017). All scenes 
are co-registered to the common reference imagery (9/27/2016 for TSX- 
74 and 10/2/2016 for TSX-150) using auxiliary information from 
Shuttle Radar Topography Mission (SRTM) DEM and precise orbits. The 
DEM-assisted co-registration can remove the phase component corre-
lated with topography and baselines in the range split-bandwidth 
interferometry (Sansosti et al., 2006). The resampled image mi is split 
into two low-resolution sub-looking images mi

fand mi
b by filtering out 

the forward and backward bands in the frequency domain, and the 
procedure is applied for the azimuth and range directions, respectively. 
The theoretically optimum bandwidth in our study is 1/3rd of the 

Fig. 2. Geological cross-sections of the Guobu slope. The dashed lines show the 
inferred limits of different zones, modified from Lin et al., 2016 and Shi 
et al., 2017b. 

Table 1 
SAR data parameters.  

Sensor TerraSAR-X Sentinel-1A/B 

Orbit number 74 150 33 

Orbit direction Descending Descending Descending 
Heading angle (◦) 189.6 191.0 193.1 
Look angle (◦) 37.9 22.8 32.6 
Pixel spacing (m; Range ×

Azimuth) 
0.45 × 0.86 2.33 × 13.97 

Timespan 9/2015–4/ 
2017 

12/2015–4/ 
2017 

1/2016–7/ 
2019 

Number of scenes 18 16 85  

X. Shi et al.                                                                                                                                                                                                                                      



Remote Sensing of Environment 265 (2021) 112664

4

original signal (Bamler and Eineder, 2005; De Zan, 2011). Image pairs 
with temporal baselines less than 80 days are used to generate in-
terferograms. The forward- and backward-looking interferograms are 
formed by the corresponding sub-look images with a multi-look factor of 
5 in both range and azimuth directions. The consequent range or azi-
muth differential interferograms can be directly produced from the 
conjugate multiplication of the forward- and backward-looking in-
terferograms. Goldstein filters are incorporated to form the forward− / 
backward-looking interferograms and differential interferograms. Pixels 
with the coherence larger than 0.3 in the differential interferograms are 
selected as reliable inputs for phase unwrapping in temporal and spatial 
domains (Hooper and Zebker, 2007) for the time-series analysis. 

Δd =
ϕsplit

2πΔfc
⋅F⋅p (1)  

where Δd is the ground displacement, ϕsplit is the differential phase in 
the azimuth and range directions, Δfc is the spectral separation between 
the forward- and backward looking interferograms which equals 2/3 of 
the bandwidth in our study, F is the sampling frequency corresponding 
to about 3.3 × 108 MHz in range and 8,100 Hz in azimuth, and p is the 
pixel spacing. When applying the TerraSAR-X data, one phase cycle 
amounts to 0.75- and 1.46-m ground displacements along with the range 
and azimuth via the split-bandwidth interferometry, respectively. 

2.2. The 3D displacement solutions 

The extracted LOS and azimuth displacements are the projections of 
3D displacements on the corresponding directions. The relationship 
between InSAR measurements and 3D displacements is given by, 
{

dNsinαsinθ − dEcosαsinθ + dUcosθ = dLOS + δLOS
dNcosα + dEsinα = dAZ + δAZ

(2)  

where dN, dE, dU are displacements measured in the north, east, and 
vertical directions, respectively; α is the satellite heading angle; θ is the 
nominal incidence angle; dLOS and dAZ are the observed LOS and azimuth 
displacements; δLOS and δAZ are the corresponding observation errors. 

Although all datasets are from descending orbits, their divergent 
look angles allow us to resolve 3D displacement fields (Figs. S1 and S2). 
Each individual LOS and azimuth displacement maps are interpolated to 
30-by-30 m grids for colocation. We can establish 5 equations with 3 
unknowns dN, dE, dU through Euler rotations. 

⎡

⎢
⎢
⎢
⎢
⎣

sinαt74sinθt74 − cosαt74sinθt74 cosθt74

cosαt74 sinαt74 0
sinαt150sinθt150 − cosαt150sinθt150 cosθt150

cosαt150 sinαt150 0
sinαs33sinθs33 − cosαs33sinθs33 cosθs33

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎣
dN
dE
dU

⎤
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⎡

⎢
⎢
⎢
⎢
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⎢
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⎢
⎢
⎣
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⎥
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⎢
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⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3)  

where the superscripts t74, t150 and s33 indicate measurements from 
TSX-74, TSX-150, and Sentinel-1, respectively. A diagonal matrix 
determined by the reciprocal standard deviation of each measurement in 
Li et al. (2019) can be used as the weight matrix to integrate measure-
ments at different precisions (Hu et al., 2014). The 3D displacements are 
solved by the least-squares estimation using multi-dimensional LOS and 
azimuth displacements from Sentinel-1 and TerraSAR-X data. 

2.3. Hydraulic diffusivity inversion 

Rainwater recharge modulates the subsurface pore pressure, fric-
tional strength, and landslide rates. Transient pore pressure changes 
from the surficial water input can be characterized by one-dimensional 
diffusion model (Terzaghi et al., 1996). 

dP
dt

= D
d2P
dz2 t > 0, z > 0 (4)  

where P is the pore pressure, t is time, D is the characteristic hydraulic 
diffusivity, and z is the depth to the basal plane. This model captures the 
first-order pore pressure propagation to a certain distance below the 
ground surface. 

The rainwater recharge R(t) is a proxy for the transient pore pressure 
at the surface (z = 0). 

P = r⋅R(t) z = 0 (5)  

where r is a scaler that relates the water to pressure. This process is 
analogous to the conductive heat transfer. The analytical solution is 
given by (Carslaw and Jaeger, 1947) 

P(z, t) =
z

2
̅̅̅̅̅̅̅
πD

√

∫ t

0

e−
z2

4D(t− s)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(t − s)3
√ P(s, z = 0)ds (6)  

where s is a time variable. We obtained the daily precipitation data 
(Station ID: 52868, location: 36◦01′ N, 101◦22′ E) to infer the pore 
pressures at given depth and hydraulic diffusivity that can best correlate 
with SAR-derived time-series landslide speed. 

3. Results 

We computed two azimuth displacements and three LOS displace-
ments from Sentinel-1 and TerraSAR-X data sets (Fig. S1). Since the 
viewing directions of the three datasets are almost parallel to the slope 
orientation (Fig. 1), the displacements of the Guobu slope can be readily 
detected in LOS measurements. In contrast, the displacements in the 
azimuth direction are mainly correlated with the local slope variations. 
The 3D displacements are recovered with measurements from the range 
and azimuth interferometry (Fig. 4). For most low-gradient landslides, 
the vertical rates are generally a couple of orders of magnitude less than 
those in the horizontal direction. Here at the Guobu slope, it is 
remarkable that the vertical rates are in a comparable order of 

Fig. 3. InSAR image pairs. (A) TSX-74, (B) TSX-150, and (C) Sentinel-1 (S1–33).  
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magnitude to that of the horizontal rates due to the oversteepened slope. 
The fastest rates of movement occur in the middle section (~0.4 m/yr in 
the vertical and ~0.7 m/yr in the horizontal). Similar phenomenon has 
been observed in other steep slopes, e.g., the Baige landslide moving at 
similar rates of ~0.1 m/day in both vertical and horizontal directions 
between August 2017 and February 2018, prior to damming the Jin-
shajiang River on October 10th 2018 (Li L. et al., 2020, Li Y. et al., 2020); 
the Shuping landslide moving at 0.6–0.8 m/yr in both vertical and 
horizontal directions from February 2009 to April 2010 (Shi et al., 
2015); the La Valette landslide moving at up to 11 m/yr vertically and 
20 m/yr horizontally during April–November 2010 (Raucoules et al., 
2013). The active slope surface mainly moves horizontally to the west 
(Fig. 4A). Both the horizontal and vertical rates of movement below the 
headscarp decrease from top to bottom. There are also a few targets in 
the lower portion showing minor uplift, which might be due to mass 
accumulation. 

We selected three targets (P1-P3 in Figs. 1B and 4) for time-series 
displacement analysis. P1 is located at the lower part of the Guobu 
slope, and P2 and P3 are located in the most deforming area below the 
headscarp. We extracted their LOS displacements from the mean of all 
measurements within 60 m, and the error bars in Fig. 5 represent one 
standard deviation for each track. The error bars of the TerraSAR-X 
measurements are larger than that of the Sentinel-1 due to a different 
accuracy between split-bandwidth interferometry and the conventional 
InSAR ranging mapping. We then projected the LOS time series of 
different tracks into the downhill direction to constitute the time series 
with enhanced temporal resolution (Fig. 5). Good consistency in the 
downslope displacements from independent datasets cross-validates our 
InSAR results. The cumulative downslope movements reach >3.5 m 
from late 2015 to mid-2019 with a peak-to-peak seasonal amplitude of 
~0.15 m. 

4. Discussion 

4.1. Correlation between GPS-observed time-series displacements and 
reservoir water level before 2014 

Large rapid water level changes can destabilize the slopes in reser-
voir areas (Paronuzzi et al., 2013; Qi et al., 2004). We extracted the 3D 
observations from 17 GPS stations around the headscarp (black box inset 
in Fig. 1) that have been reported in Zhang (2014) and used the absolute 
value, i.e., 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
E2 + N2 + U2

√
, to characterize the landslide motions (Fig. 6). 

The largest measured displacements, >40 m in 4.5 years, occurred at 

GPS location QC7 located on top of a toppling block on the downslope 
edge of the bench formed at the top of the slide (Figs. 1 and 6C). In 
comparison, along the northern flank of the headscarp, points IP1-IP4, 
moved on the order of 5 m in the same 4.5-year period (Figs. 6C) 
(Zhang, 2014). The landslide rate changes (up to 80–90 mm/day) were 
in sync with the water levels. The rates decreased to less than 5 mm/day 
when the water levels became generally stable at ~2,448 m a.s.l be-
tween September 2012 and July 2014, during the observation period 
(Xia et al., 2018). To investigate the slope movements in response to 
water level changes, we focused on the time span between June 2011 
and November 2013 when water levels stabilized gradually (Figs. 6B, 
D), and we extracted the non-linear components for both water levels 
and displacements. Unlike the pronounced seasonal variation in InSAR- 
derived displacement during late 2015 to mid-2019, the slope move-
ment did not exhibit seasonal deformation before the reservoir water 
level stabilized (Fig. 6D). We cannot rule out the possibility of a seasonal 
component in GPS observations, yet the amplitude is apparently insig-
nificant compared to the drastic long-term rates during water 
impoundment period. Remarkably, the cross-correlation result shows 
that the non-linear water level changes and deformation are perfectly in 
phase with a zero-day shift, suggesting that the slope stability was 
entirely subject to water level changes in the reservoir and the impact 
from the precipitation was negligible during this period. 

4.2. Correlation between the InSAR-derived seasonal displacements and 
rainfall during 2015–2019 

Seasonal variations in the rate of movement due to the hydro- 
mechanically coupling associated with the precipitation have been 
documented in rockslides (e.g., Brückl et al., 2013; Crosta et al., 2017; 
Fig. 5). We focused on the relationship between precipitations and slope 
displacements to better understand the driving mechanisms while the 
water level remained essentially unchanged during 2015–2019. 

Our data show that the fastest displacements occur in the rainy 
season from June to September as observed by comparing the daily 
precipitation (vertical stems in Fig. 7A) and smoothed record from the 
daily average displacements on a 30-day running window (continuous 
blue line in Fig. 7A). Generally, the rate peaks when the annual cumu-
lative precipitation reaches at least 150 mm (black dashed line in 
Fig. 7A). On the other hand, the lowest rates occur between January and 
March, consistent with the decrease seasonal rainfall (Fig. 7). The 
rainwater can easily infiltrate into the Guobu slope through the multi-
tude of joints from the slope surface. To further quantify the role of 
precipitation in controlling the landslide velocity, we simulated the 

Fig. 4. 3D displacement velocity maps of the Guobu slope. (A) The horizontal and (B) the vertical velocities. InSAR-derived displacements of P1-P3 targets are shown 
in Figs. 5 and 7. 
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time-dependent pore pressures at a characteristic depth of 200 m using 
the one-dimensional diffusion model (section 3.3). The minimum re-
sidual between the modeled pore pressure and InSAR-measured down-
hill movements help constrain a hydraulic diffusivity of ~1.05 × 10-7 

m2/s. 

4.3. Inferred depth of movement 

Landslide depth and volume are critical parameters to evaluate and 
mitigate potential failures. However, quantifying the basal geometry at 

the Guobu slope from traditional borehole drilling or tunnel excavation 
is challenging due to rapid initial deformation, risky field survey con-
ditionsdue to the steepness of the slope, and high-strength materials. Lin 
et al. (2016) reported a rough estimation on the volume to be on the 
order of 3 × 107 m3, from boreholes and tunnels at a few locations over 
the less deforming slope margins. 

The 3D surface displacements can be used to invert the basal ge-
ometry following the law of mass conservation (Booth et al., 2013; 
Intrieri et al., 2020; Hu et al., 2018; Hu et al., 2019). However, the mass 
conservation approach can hardly be applied to the Guobu slope because 
we lack the displacement measurements on the submerged toe of the 
slope. Therefore, we employed a vector inclination method (Carter and 
Bentley, 1985) to infer the basal surface of the Guobu slope along cross- 
section profiles. This method has been used to characterize the trans-
lational, planar, or rotational landslides based on the field-based 
displacement measurements (Carter and Bentley, 1985) and InSAR- 
derived 3D displacements (Intrieri et al., 2020). The fundamental 
assumption is that the rock mass moves as a rigid body in an infinites-
imal distance so that the vectors of surface movements are parallel to the 
continuous sliding surfaces underneath. The basal surfaces results are 
determined by the position and direction of the applied surface vectors. 
As revealed by the InSAR derived 3D measurements, the upper part of 
the Guobo slope is a large, complex rock topple that may have some 
joints and shears at depth along which there is sliding. However, mul-
tiple basal surfaces have been considered in previous numerical analysis 
(Lin et al., 2016). Using the vector inclination approach, we derived the 
slip surfaces for cross-section AA’ and BB’ (locations are shown in the 
inset of Fig. 8 and Fig. S1A) using our 3D displacements. The maximum 
and average vertical distance from the surface to the inferred base sur-
faces are 227+26

-21 and 150 m along AA’, and 224+35
-28 and 135 m along 

BB’; the stratigraphic depth is 168+23
-16 and 149+23

-11 m along AA’ and 
BB’, respectively (Fig. 8). The largest landslide thickness and the most 
extensive surface displacements occur between elevation 2,700 m and 
2,800 m in the longitudinal middle of the slope. Correspondingly, we 
estimated the landslide volume to be on the order of 107 m3, in a general 
agreement with previous reports (Lin et al., 2016; Xia et al., 2018). 

4.4. Envisions 

Our framework can be employed in other study areas. Multi- 
temporal InSAR scheme can effectively suppress the random noise and 
improve the performance of conventional split bandwidth InSAR. Jo 
et al. (2015) reported the accuracy of stacking split bandwidth InSAR in 
the azimuth direction to be about 10.7 and 10.3 mm/yr in K̄ılauea 
Volcano, Hawai’i when using the ascending and descending ENVISAT 
ASAR tracks. The root-mean-square error of the stacking approach has 
decreased by six times compared to the conventional split bandwidth 
InSAR method (Jo et al., 2015). In addition, natural environments are 
usually featured with distributed scatterers with low phase stabilities 
such as in the vegetated areas. SqueeSAR method seeks the statistical 
characteristics of homogeneous pixels and significantly increases the 
density of credible pixels, especially for the non-urban environments 
such as debris slides (Ferretti et al., 2011; Shi et al., 2018). Beyond that, 
analytical and numerical models can be incorporated to infer the basal 
geometries and physical properties of landslide systems based on 
remotely sensed surface displacements of the entire active catchment (e. 
g., Booth et al., 2013; Hu et al., 2018; Hu et al., 2019; Nikolaeva et al., 
2014). 

5. Concluding remarks 

We obtained 3D surface velocities and the time-dependent down-
slope movements of the Guobu slope in response to river level changes 
(before 2014) and seasonal precipitation (2015–2019) from a joint 
analysis of azimuth and range InSAR observations from TerraSAR-X and 
Sentinel-1 satellites, previously reported GPS observations (Zhang, 

Fig. 5. InSAR-derived time-series cumulative and non-linear/seasonal 
displacement of three selected targets (locations shown in Figs. 1B and 4) – 
(A) P1, (B) P2, and (C) P3. Green, blue and yellow symbols are TerraSAR-X 
(TSX) and Sentinel-1 (S1) results, respectively. Time series in the gray boxes 
are the non-linear components. Error bars represent one standard deviation of 
the measurements within 60-m-distance to the given target. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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2014), and the hydroclimatic record of reservoir water levels and pre-
cipitation. The results show that the middle part of the Guobu slope 
moves fastest where the slope steepens. Before the river level became 
stable from roughly 2012 to early 2015, the activity of the Guobu slope 
was controlled by the water level changes without temporal delay, 
suggesting very high fracture permeability of the lower portion of the 
rock mass. Thereafter, the landslide motions have been synchronous 
with the seasonal rainfall with a peak rate of movement between June 
and September. By correlating the rainfall-modulated pore pressure and 
landslide speed, we estimated the hydraulic diffusivity of the rockslide 
mass to be ~1.05 × 10-7 m2/s, which is in the typical range for fractured 
rocks. A first-order approximation of the basal slip vectors inferred from 
3D surface displacement vectors gives a depth of mass movement ~200 

m and a corresponding landslide volume on the order of 107 m3. These 
metrics can help better prepare for potential co-/post-failure inundation 
and flooding. More importantly, our results demonstrate that the slope 
continues to move, though at a reduced rate than during the reservoir 
filling. Therefore, continued monitoring of the rock mass is critical for 
detecting any tendency for slide acceleration and the potential for 
increased instability. 

Fig. 6. River level and GPS-derived time-series displacements during 2009–2014. The locations of the GPS sites are marked in Fig. 1B. (A) The river level during 
2009–2013 and (B) its non-linear component from June 2011 to November 2013 when the water level became stable gradually. (C) The displacements during 
2009–2013 of 17 GPS sites and (D) their non-linear component of 15 GPS sites from June 2011 to November 2013 (IP10 and QC9 are excluded as no observation 
during this time frame). GPS data were extracted from Zhang (2014). The inset in panel D shows the cross-correlation (xcorr) between the non-linear river level and 
the average non-linear displacement of GPS stations at 11 stations with evident high-frequency signals (IP1 to IP4 are excluded); results are completely in phase with 
zero-day shift. 

Fig. 7. Landslide speed, precipitation, and the inferred pore pressure. (A) Daily 
precipitation in vertical stems, daily average precipitation on a 30-day running 
window in blue line, and annual cumulative precipitation (reset to 0 in each 
October 1st) in black dashed line. (B) The normalized estimates of landslide 
speed at three targets P1-P3 (Figs. 4 and 5) and pore pressure at a characteristic 
distance of 200 m below the surface. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 8. Slope cross sections AA’ and BB’. Arrows denote the surface displace-
ment vectors in the indicated magnitude and directions. Dashed lines show the 
inferred limit of mass movement from the surface displacement vectors. Gray 
shades show the uncertainties derived from one standard deviation of dis-
placements within a 30-m distance to the selected targets. We noted that 
multiple shear surfaces and joints are highly likely. 
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